match_sampling_rate
MatchSamplingRate(reference_feature_name, feature_interpolation_map)
Bases: Transform
Matches the sampling rate of all time series in the DataFrame.
Interpolates the time series to match the sampling rate of the reference
time series. The below example shows the usage of a MatchSamplingRate
transform in a run.py
file. Assuming the loaded data is
represented by the table:
feature_a | feature_b | const |
---|---|---|
list[struct[time,struct[]]] | list[struct[time,struct[]]] | int |
--------------------------- | --------------------------- | ----- |
[{12:26:01.0, {1.2}}, | [{12:26:00.0, {1.0}}, | 1 |
{12:26:02.0, {2.4}}, | {12:26:05.0, {2.0}}] | |
{12:26:03.0, {3.6}}, | ||
{12:26:04.0, {4.8}}] |
The following transform can be used to match the sampling rate
of the time series feature_b
to the sampling rate
of the time series feature_a
.
...
environment.load()
data = environment.get_data()
transform = MatchSamplingRate(
reference_feature_name="feature_a",
feature_interpolation_map={
"feature_b": "linear",
},
)
transformed_data = transform.transform(data)
...
The resulting Dataframe after the transform is:
feature_a | feature_b | const |
---|---|---|
list[struct[time,struct[]]] | list[struct[time,struct[]]] | int |
--------------------------- | --------------------------- | ----- |
[{12:26:00.0, {1.2}}, | [{12:26:00.0, {1.2}}, | 1 |
{12:26:01.0, {2.4}}, | {12:26:01.0, {1.4}}, | |
{12:26:02.0, {3.6}}, | {12:26:02.0, {1.6}}, | |
{12:26:03.0, {4.8}}] | {12:26:03.0, {1.8}}] |
Initialize the transform.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
reference_feature_name
|
str
|
Reference timeseries feature. |
required |
feature_interpolation_map
|
dict[str, MatchSamplingRateMethod]
|
Key-value pairs of the timeseries features that are targeted in interpolation columns and the interpolation method to use. At the moment, the interpolation method can only be 'linear'. |
required |
Source code in src/flowcean/polars/transforms/match_sampling_rate.py
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
|
apply(data)
Transform the input DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
LazyFrame
|
Input DataFrame. |
required |
Returns:
Type | Description |
---|---|
LazyFrame
|
Transformed DataFrame. |
Source code in src/flowcean/polars/transforms/match_sampling_rate.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
|
FeatureNotFoundError(feature)
Bases: Exception
Feature not found in the DataFrame.
This exception is raised when a feature is not found in the DataFrame.
Source code in src/flowcean/polars/transforms/match_sampling_rate.py
213 214 |
|
UnknownInterpolationError(interpolation_method)
Bases: Exception
Interpolation method is not implemented yet.
This exception is raised when a feature is not found in the DataFrame.
Source code in src/flowcean/polars/transforms/match_sampling_rate.py
223 224 |
|
interpolate_feature(target_feature_name, data, reference_feature, interpolation_method)
Interpolate a single time series feature.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_feature_name
|
str
|
Timeseries feature to interpolate. |
required |
data
|
DataFrame
|
Input DataFrame. |
required |
reference_feature
|
DataFrame
|
Reference timeseries feature. |
required |
interpolation_method
|
str
|
Interpolation method to use. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
Interpolated timeseries feature. |
Source code in src/flowcean/polars/transforms/match_sampling_rate.py
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
|