match_sampling_rate
MatchSamplingRate(reference_feature_name, feature_interpolation_map=None, fill_strategy='both_ways')
Bases: Transform
Matches the sampling rate of all time series in the DataFrame.
Interpolates the time series to match the sampling rate of the reference
time series. The feature_interpolation_map
parameter is a dictionary that
specifies the interpolation method for each feature. The keys are
the feature names, and the values are the interpolation methods.
The interpolation method can be 'linear' or 'nearest'. If the
feature_interpolation_map
parameter is not provided, all features
except the reference feature will be interpolated using the
'nearest' method. The fill_strategy
parameter specifies the
strategy to fill missing values after interpolation. The default
value is 'both_ways', which means that missing values will be
filled using both forward and backward filling. Other options
include 'forward', 'backward', 'min', 'max', 'mean', 'zero', and
'one'.The below example shows the usage of a MatchSamplingRate
transform in a run.py
file. Assuming the loaded data is
represented by the table:
| feature_a | feature_b | const |
| --- | --- | --- |
| list[struct[time,struct[]]] | list[struct[time,struct[]]] | int |
| --------------------------- | --------------------------- | ----- |
| [{12:26:01.0, {1.2}}, | [{12:26:00.0, {1.0}}, | 1 |
| {12:26:02.0, {2.4}}, | {12:26:05.0, {2.0}}] | |
| {12:26:03.0, {3.6}}, | | |
| {12:26:04.0, {4.8}}] | | |
The following transform can be used to match the sampling rate
of the time series feature_b
to the sampling rate
of the time series feature_a
.
...
environment.load()
data = environment.get_data()
transform = MatchSamplingRate(
reference_feature_name="feature_a",
feature_interpolation_map={
"feature_b": "linear",
},
)
transformed_data = transform.transform(data)
...
The resulting Dataframe after the transform is:
| feature_a | feature_b | const |
| --- | --- | --- |
| list[struct[time,struct[]]] | list[struct[time,struct[]]] | int |
| --------------------------- | --------------------------- | ----- |
| [{12:26:00.0, {1.2}}, | [{12:26:00.0, {1.2}}, | 1 |
| {12:26:01.0, {2.4}}, | {12:26:01.0, {1.4}}, | |
| {12:26:02.0, {3.6}}, | {12:26:02.0, {1.6}}, | |
| {12:26:03.0, {4.8}}] | {12:26:03.0, {1.8}}] | |
Initialize the transform.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
reference_feature_name
|
str
|
Reference timeseries feature. |
required |
feature_interpolation_map
|
dict[str, MatchSamplingRateMethod] | None
|
Key-value pairs of the timeseries features that are targeted in interpolation columns and the interpolation method to use. The interpolation method can be 'linear' or 'nearest'. |
None
|
fill_strategy
|
FillStrategy
|
Strategy to fill missing values after interpolation. |
'both_ways'
|
Source code in src/flowcean/polars/transforms/match_sampling_rate.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|
apply(data)
Transform the input DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
LazyFrame
|
Input DataFrame. |
required |
Returns:
Type | Description |
---|---|
LazyFrame
|
Transformed DataFrame. |
Source code in src/flowcean/polars/transforms/match_sampling_rate.py
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
|
FeatureNotFoundError(feature)
Bases: Exception
Feature not found in the DataFrame.
This exception is raised when a feature is not found in the DataFrame.
Source code in src/flowcean/polars/transforms/match_sampling_rate.py
316 317 |
|
interpolate_feature(target_feature_name, data, reference_feature, interpolation_method='linear', fill_strategy=None)
Interpolate a single time series feature using Polars expressions.
Source code in src/flowcean/polars/transforms/match_sampling_rate.py
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
|