Skip to content

regression

MaxError(feature=None)

Bases: SelectMixin, LazyMixin, Metric

Max error regression loss.

As defined by scikit-learn.

Initialize MaxError metric.

Parameters:

Name Type Description Default
feature str | None

The feature to calculate the metric for. If None, the metric expects a single feature in the data.

None
Source code in src/flowcean/sklearn/metrics/regression.py
19
20
21
22
23
24
25
26
27
def __init__(self, feature: str | None = None) -> None:
    """Initialize MaxError metric.

    Args:
        feature: The feature to calculate the metric for. If None, the
            metric expects a single feature in the data.
    """
    features = [feature] if feature is not None else None
    super().__init__(features=features)

MeanAbsoluteError(features=None, multioutput='raw_values')

Bases: SelectMixin, LazyMixin, MultiOutputMixin, Metric

Mean absolute error (MAE) regression loss.

As defined by scikit-learn.

Initialize metric.

Parameters:

Name Type Description Default
features list[str] | None

The features to calculate the metric for. If None, the metric uses all features in the data.

None
multioutput Literal['raw_values', 'uniform_average']

Defines how to aggregate multiple output values. See scikit-learn documentation for details.

'raw_values'
Source code in src/flowcean/sklearn/metrics/regression.py
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
def __init__(
    self,
    features: list[str] | None = None,
    multioutput: Literal[
        "raw_values",
        "uniform_average",
    ] = "raw_values",
) -> None:
    """Initialize metric.

    Args:
        features: The features to calculate the metric for. If None, the
            metric uses all features in the data.
        multioutput: Defines how to aggregate multiple output values.
            See [scikit-learn documentation](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html)
            for details.
    """
    super().__init__(features=features, multioutput=multioutput)

MeanAbsolutePercentageError(features=None, multioutput='raw_values')

Bases: SelectMixin, LazyMixin, MultiOutputMixin, Metric

Mean absolute percentage error (MAPE) regression loss.

As defined by scikit-learn.

Initialize metric.

Parameters:

Name Type Description Default
features list[str] | None

The features to calculate the metric for. If None, the metric uses all features in the data.

None
multioutput Literal['raw_values', 'uniform_average']

Defines how to aggregate multiple output values. See scikit-learn documentation for details.

'raw_values'
Source code in src/flowcean/sklearn/metrics/regression.py
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
def __init__(
    self,
    features: list[str] | None = None,
    multioutput: Literal[
        "raw_values",
        "uniform_average",
    ] = "raw_values",
) -> None:
    """Initialize metric.

    Args:
        features: The features to calculate the metric for. If None, the
            metric uses all features in the data.
        multioutput: Defines how to aggregate multiple output values.
            See [scikit-learn documentation](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html)
            for details.
    """
    super().__init__(features=features, multioutput=multioutput)

MeanSquaredError(features=None, multioutput='raw_values')

Bases: SelectMixin, LazyMixin, MultiOutputMixin, Metric

Mean squared error (MSE) regression loss.

As defined by scikit-learn.

Initialize metric.

Parameters:

Name Type Description Default
features list[str] | None

The features to calculate the metric for. If None, the metric uses all features in the data.

None
multioutput Literal['raw_values', 'uniform_average']

Defines how to aggregate multiple output values. See scikit-learn documentation for details.

'raw_values'
Source code in src/flowcean/sklearn/metrics/regression.py
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
def __init__(
    self,
    features: list[str] | None = None,
    multioutput: Literal[
        "raw_values",
        "uniform_average",
    ] = "raw_values",
) -> None:
    """Initialize metric.

    Args:
        features: The features to calculate the metric for. If None, the
            metric uses all features in the data.
        multioutput: Defines how to aggregate multiple output values.
            See [scikit-learn documentation](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html)
            for details.
    """
    super().__init__(features=features, multioutput=multioutput)

R2Score(features=None, multioutput='raw_values')

Bases: SelectMixin, LazyMixin, MultiOutputMixin, Metric

R^2 (coefficient of determination) regression score.

As defined by scikit-learn.

Initialize metric.

Parameters:

Name Type Description Default
features list[str] | None

The features to calculate the metric for. If None, the metric uses all features in the data.

None
multioutput Literal['raw_values', 'uniform_average']

Defines how to aggregate multiple output values. See scikit-learn documentation for details.

'raw_values'
Source code in src/flowcean/sklearn/metrics/regression.py
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
def __init__(
    self,
    features: list[str] | None = None,
    multioutput: Literal[
        "raw_values",
        "uniform_average",
    ] = "raw_values",
) -> None:
    """Initialize metric.

    Args:
        features: The features to calculate the metric for. If None, the
            metric uses all features in the data.
        multioutput: Defines how to aggregate multiple output values.
            See [scikit-learn documentation](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html)
            for details.
    """
    super().__init__(features=features, multioutput=multioutput)