regression
MaxError(feature=None)
Bases: SelectMixin
, LazyMixin
, Metric
Max error regression loss.
As defined by scikit-learn.
Initialize MaxError metric.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
feature
|
str | None
|
The feature to calculate the metric for. If None, the metric expects a single feature in the data. |
None
|
Source code in src/flowcean/sklearn/metrics/regression.py
19 20 21 22 23 24 25 26 27 |
|
MeanAbsoluteError(features=None, multioutput='raw_values')
Bases: SelectMixin
, LazyMixin
, MultiOutputMixin
, Metric
Mean absolute error (MAE) regression loss.
As defined by scikit-learn.
Initialize metric.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
list[str] | None
|
The features to calculate the metric for. If None, the metric uses all features in the data. |
None
|
multioutput
|
Literal['raw_values', 'uniform_average']
|
Defines how to aggregate multiple output values. See scikit-learn documentation for details. |
'raw_values'
|
Source code in src/flowcean/sklearn/metrics/regression.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
|
MeanAbsolutePercentageError(features=None, multioutput='raw_values')
Bases: SelectMixin
, LazyMixin
, MultiOutputMixin
, Metric
Mean absolute percentage error (MAPE) regression loss.
As defined by scikit-learn.
Initialize metric.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
list[str] | None
|
The features to calculate the metric for. If None, the metric uses all features in the data. |
None
|
multioutput
|
Literal['raw_values', 'uniform_average']
|
Defines how to aggregate multiple output values. See scikit-learn documentation for details. |
'raw_values'
|
Source code in src/flowcean/sklearn/metrics/regression.py
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
|
MeanSquaredError(features=None, multioutput='raw_values')
Bases: SelectMixin
, LazyMixin
, MultiOutputMixin
, Metric
Mean squared error (MSE) regression loss.
As defined by scikit-learn.
Initialize metric.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
list[str] | None
|
The features to calculate the metric for. If None, the metric uses all features in the data. |
None
|
multioutput
|
Literal['raw_values', 'uniform_average']
|
Defines how to aggregate multiple output values. See scikit-learn documentation for details. |
'raw_values'
|
Source code in src/flowcean/sklearn/metrics/regression.py
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|
R2Score(features=None, multioutput='raw_values')
Bases: SelectMixin
, LazyMixin
, MultiOutputMixin
, Metric
R^2 (coefficient of determination) regression score.
As defined by scikit-learn.
Initialize metric.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
list[str] | None
|
The features to calculate the metric for. If None, the metric uses all features in the data. |
None
|
multioutput
|
Literal['raw_values', 'uniform_average']
|
Defines how to aggregate multiple output values. See scikit-learn documentation for details. |
'raw_values'
|
Source code in src/flowcean/sklearn/metrics/regression.py
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
|