sklearn
Accuracy
ClassificationReport
Bases: OfflineMetric
Build a text report showing the main classification metrics.
As defined by scikit-learn.
FBetaScore(beta=1.0)
Bases: OfflineMetric
F-beta score.
As defined by scikit-learn.
Initialize the metric.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
beta
|
float
|
The beta parameter. |
1.0
|
Source code in src/flowcean/sklearn/metrics/classification.py
44 45 46 47 48 49 50 |
|
PrecisionScore
Recall
MaxError
MeanAbsoluteError
MeanSquaredError
R2Score
Bases: OfflineMetric
R^2 (coefficient of determination) regression score.
As defined by scikit-learn.
SciKitModel(model, output_name)
Bases: Model
A model that wraps a scikit-learn model.
Initialize the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Any
|
The scikit-learn model. |
required |
output_name
|
str
|
The name of the output column. |
required |
Source code in src/flowcean/sklearn/model.py
16 17 18 19 20 21 22 23 24 25 26 27 28 |
|
RegressionTree(*args, dot_graph_export_path=None, **kwargs)
Bases: SupervisedLearner
Wrapper class for sklearn's DecisionTreeRegressor.
Reference: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
Initialize the regression tree learner.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
Any
|
Positional arguments to pass to the DecisionTreeRegressor. |
()
|
dot_graph_export_path
|
None | str
|
Path to export the decision tree graph to. |
None
|
**kwargs
|
Any
|
Keyword arguments to pass to the DecisionTreeRegressor. |
{}
|
Source code in src/flowcean/sklearn/regression_tree.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
|